
An introduction to
geophysical inversion,

with comparisons to
analytical inversion

Andrew Ganse

Dept. of Earth & Space Sciences (ESS-UW)
Applied Physics Laboratory (APL-UW)

aganse@apl.washington.edu
http://staff.washington.edu/aganse

UW Math department Inverse Problems seminar

17 Oct 2007



Briefly before I begin…

“Jim!  I’m a geophysicist, not a mathematician…”

A pretty good beer!

Please correct me on any missteps in my mathematical descriptions
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Outline

1. Introducing two approaches to geophysical inversion:
a. Frequentist: statistical, find the deterministic but unknown model.
b. Bayesian: probabilistic, the model is a random variable; find PDF.

2. A comparison with analytical inversion in linear problems.
3. Details of Frequentist inversion in linear problems
4. Details of Bayesian inversion in linear problems
5. Weakly nonlinear problems
6. More strongly nonlinear problems
7. Filters and smoothers
8. My own PhD work
9. Summarize
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Inverse theory resources on my APL website
http://staff.washington.edu/aganse

(also linked via ESS and APL directory pages)

• Geophysical inverse theory primer
• Recommended books & papers
• Links to software and other
  web resources
• Lecture notes and labs from
  the inverse theory class I TA’d.
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Introducing two approaches
Frequentist inversion - find the deterministic but unknown model

data points
di ,  i=1..N

(acoustic pressure on a
hydrophone at time ti)

model
m(x)

(wavespeeds over depth)

Modified after Snieder & Trampert, 2000

noise 
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Introducing two approaches
Frequentist inversion - find the deterministic but unknown model

data points
di ,  i=1..N

(acoustic pressure on a
hydrophone at time ti)

true model
m(x)

(wavespeeds over depth)
forward problem

inverse problem
estimated model

m(x)
(wavespeeds over depth)

~

appraisal
problem

Modified after Snieder & Trampert, 2000

noise 
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Introducing two approaches
Bayesian inversion - parameterized model has parameters

that are random variables, find their joint PDF

data likelihood
p(d|m)

(includes forward problem)

prior model PDF p(m)
(perhaps from supplemental

direct measurements of model)

posterior model PDF
p(m|d)

data points
di ,  i=1..Nnoise 
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Geophysical vs. analytical inversion

• Integral equation (IFK):

• Inverse problem :

• Parameterize m(x) :

• Parameter estimation problem :

Linear special cases

• Inverse problem :

• Still parameterize the same way :

• Parameter estimation problem :

General nonlinear problems

Given a set of discrete data di we want to solve for a continuum model m(x)

Loosely based on Menke, 1989GANSE,  APL, Univ. of WA, 2007



Some analytical inversion attempts for
geophysical problems

• Exact inversion
• Downward-continuation
• Layer-stripping
• Gelfand-Levitan method

But noting work by our own
Sylvester & Winebrenner re 

reflection coefficients: promising 
for this one problem, although

limited to 1D with no attenuation

Mainly developed for use on
Schroedinger equation, with

transforms for wave equation.
So doesn’t handle elasticity.
Also too unstable for use in

geophysical problems, where we
have lots of noise and terrible

geometric coverage.
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A few clarifications

• Note model function m(.) doesn’t have to be 1D, but we still use vector m :

• Rank-deficiency and ill-posedness :

To keep notation clean here, let us
assume noise in dobs is ε ~ N(0,I)

(i.e. data misfit)

Define objective function:
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• Regularized least squares example (Tikhonov) :

• Occam’s regularization - 2nd derivative constraint via “roughness” matrix L :

• Choosing optimal tradeoff parameter on L-curve :

“messes up” the estimator
in return for stability (see next slide)

Linear inverse problems

νΝ
ν3

ν1
ν2

data misfit

roughness

We want to only fit the data to
within the noise statistics, then
choose the smoothest model fn.
But we often don’t know the noise
statistics, so the choice of best
tradeoff param isn’t always trivial.

Finding a solution estimate in frequentist approach

…again let ε ~ N(0,I) here.
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Linear inverse problems

• Covariance and resolution matrices :

•         “generalized inverse” of G :

•   compute covariance matrix as :

•    compute resolution matrix as :

covariance matrix resolution matrix

Uncertainty and resolution of the frequentist solution estimate

…again let ε ~ N(0,I) here.

“Messing up” the
estimator means its

solution becomes a set
of weighted averages
 of the true solution.

The resolution matrix
contains the weights,

and this covariance
matrix is that of the
weighted averages,
NOT of the model

parameters themselves.
Thus this approach
does not provide a
probabilistic result.
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Resolution analysis for experiment design
Resolution analysis to optimize experiment geometry, before doing the experiment

tr(R) ~ # of parameters resolved by the dataset

resolution matrix R
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The weights are generally clumped about
the parameter of interest, lending an

interpretation of limited resolution -- for
example, parameter 30 here cannot be
resolved independently from parameters

25 - 40.  A diagonal resolution matrix has
perfect resolution, and increasing spread

about the diagonal shows coarsening
resolution.  (However, note not all

resolution matrices are symmetric.)

This map can then
show optimal
location(s) for the
receiver array.

Could map a function q(range,depth) where each grid point gets a tr(R) value
corresponding to a different receiver array location.



Introducing Bayesian inversion

• Frequentists define probability in terms of frequency of repeatable events.
So one can’t know anything about model before the event/experiment.

• Bayesians define probability in terms of degree of belief.
So one can know about the model before the event/experiement.

• Bayes’ Rule:  (from definition of conditional probability)

for linear problem + gaussian dists, frequentist & Bayesian solutions look similar…

“posterior” distribution
of model parameters

“prior” distribution of
model parameters

“data likelihood”
function
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Comparison of Bayesian and frequentist
inversion for linear problems

prior cov
parameterized by ν

• Linear problems + gaussian distributions  same ML/MAP estimate.
   (for same “prior info”, eg roughness regularization).

• Freq :

• Bayes :

• But the solution covariances differ due to the different philosophies :

• Freq :

• Bayes :

…again here ε ~ N(0,I) in dobs = f(m) + ε 

(for mprior=0)

(for mpreferred=0)

(since Cε=I)
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Comparison of Bayesian and frequentist
inversion for linear problems

A linear resolution matrix can be defined for both cases (although they’re not
identically the same quantity because the philosophies/covariances differ) :

• Freq :

• Bayes :

Unlike frequentist inversion which must estimate weighted averages of model parameters,
Bayesian inversion is a fully probabilistic description of the model parameters themselves.
So no weighted averages, and all resolution information is contained in the probability
distributions.

Tarantola, 2005

…again here ε ~ N(0,I) in dobs = f(m) + ε 

GANSE,  APL, Univ. of WA, 2007



Weakly nonlinear inverse problems

• Local linearization (using analytical derivs, finite diffs, or alg diff for the F(mi) ) :

• Observed data :   dobs = f(m) + ε 

• Gauss-Newton method :

(i.e. Taylor series expansion about mi )

matrix of
partial derivs

truncate
at linear

Let’s say ε ~ N(0,I) to keep notation clean below…

Finding a solution estimate via local linearization in either frequentist or Bayesian inv.

 compute local derivatives

 compute local residuals

 add on the new model perturbation step

 solve for model perturbation step

objective surface
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Only proportionality necessary for modifying random walk (saves computation):

Metropolis/Hastings :  random walk that prefers higher posterior probabilities:

For more strongly nonlinear problems…

• probability information is in sample
density rather than in the p(m|d)
values of the samples

• then compute marginal distributions
and so on for the parameters

• burn-in, sample independence, and
when to stop sampling

Markov Chain Monte Carlo (MCMC) sampling of the Bayesian posterior distribution

(Raftery & Lewis, 1996)

GANSE,  APL, Univ. of WA, 2007



Filters and smoothers - stringing together
a series of Bayesian inverse problems

“Conjugate prior”:  for a given data likelihood p(d|m), one that 
produces a posterior distribution of the same form as the prior, 
i.e. parameterized the same (e.g. Gaussian or other exponential)

time 0 :

time 1 :

time 2 :

Set next prior equal to
previous posterior…

Set next prior equal to
previous posterior…

etc…
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Filters and smoothers - stringing together
a series of Bayesian inverse problems

Filter -       estimates a vector function m(t) or sequence mk (k=1..N)
at last measurement point:

t

measurements:   1     2      3     4     5     6     7     8

estimate

Smoother -   estimates a vector function m(t) or sequence mk (k=1..N)
in middle of measurements

t

measurements:   1     2      3     4     5     6     7     8

estimate
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A common application of filters and smoothers

E.g. tracking a satellite or missile.
We additionally regularize by

the dynamics to find the
“best” trajectory.

G. Schmidt, J. Guidance, Cntl., & Dyn., 1993
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Filter theory tutorial code on my APL website
http://staff.washington.edu/aganse

(also linked via ESS and APL directory pages)
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My own PhD work
• Resolution and uncertainty analyses for a shallow water

ocean bottom inverse problem:
– optimize experiment geometry via resolution analysis, and design

experiments in which much more information about the bottom is
obtained

– validating linear approximation of uncertainty and resolution via
Monte Carlo and nonlinear filter approaches.  Ideally the linearization
approach is preferrable since fastest, but must check validity.
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Summary
• Introduced both frequentist and Bayesian inversion, and filters

• Linear, weakly nonlinear, and more strongly nonlinear problems

• Discussion regarding geophysical vs. analytical inversion

• Some shameless plugs for material on my website   ;-)

• And a brief mention of my own PhD research (not the focus today).

• This talk paves the way for Ken Creager’s (ESS-UW) talk next time on
results of specific geophysical inversion work, including 3D crustal
tomography and locating seismic “tremor” signals.

THANK YOU
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