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Briefly before | begin...

A pretty good beer!

“Jim! ’'m a geophysicist, not a mathematician...”
Please correct me on any missteps in my mathematical descriptions
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A little bit about ESS-UW

Department of Earth and Space Sciences, University of Washington
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A little bit about APL-UW
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Qutline

|. Introducing two approaches to geophysical inversion:
a. Frequentist: statistical, find the deterministic but unknown model.
b. Bayesian: probabilistic, the model is a random variable; find PDF.

A comparison with analytical inversion in linear problems.
Details of Frequentist inversion in linear problems

Details of Bayesian inversion in linear problems

Weakly nonlinear problems

More strongly nonlinear problems

Filters and smoothers

My own PhD work

NS WN

Summarize
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Inverse theory resources on my APL website

http://staff.washington.edu/aganse

(also linked via ESS and APL directory pages)

Andy Ganse's Geophysical Inverse Theory Resources Page
Andy Ganse, Applied Physics Laboratory, University of Washington, Seattle

Home / Inverse Theory Resources /

Home
C.V.

Current Research & Pubs

Inverse Theory Resources

2004 Summer School
Side Interests
My Bookshelf
Downloads
Blog/Ramblings

Some handy quick links:

UW (Seattle} Math Dept

Inverse Problems seminars
(you know how those pure
mathematicians are; be sure to
keep them honest by
occasionally bringing up
questions about noise and
stability!)

k4 Denial i Il

¢ Recommended reading

A growing list of recommended textbooks and helpful papers, Q&A list, related web links, and lecture
notes, all on aspects of geophysical inverse theory.

o NEW: A Geophysical Inverse Theory Primer, by Andrew Ganse, version 26Sep2007. This document (PDF

file) is ten pages long, contains no equations, and aims to provide an overview of the main concepts in inverse
theory. By giving a summary at a high-level, the goal is to introduce the subject to the new user, and place the
different concepts in and solution methods in perspective with each other before delving into mathematical

details.

o Textbooks:
(Note also my "favorite textb
inverse theory along with oth

» Parameter Estimation

Note also the homepa
For beginners to invery
useful books on the to|
Matlab examples. Ther
there are tons of hand|
individual methods els:
limitations.

= Inverse Problem Theol|

Very well written book
useful comparisons be!

copy of this book on hi

* Geophysical inverse theory primer
* Recommended books & papers
* Links to software and other
web resources
* Lecture notes and labs from
the inverse theory class | TA'd.

can afford it.)
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Introducing two approaches

Frequentist inversion - find the deterministic but unknown model

model
m(x)

noise (wavespeeds over depth)

data points
d., i=1.N

1l
(acoustic pressure on a

hydrophone at time t)
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Introducing two approaches

Frequentist inversion - find the deterministic but unknown model

true model
forward problem m(x)

(wavespeeds over depth)

noise
data points
d;, i=L.N appraisal
(acoustic pressure on a problem

hydrophone at time t)

estimated model
m(x)
(wavespeeds over depth)

inverse problem
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Introducing two approaches

Bayesian inversion - parameterized model has parameters
that are random variables, find their joint PDF

data points
noise — " d.

-y i=L.N

data likelihood prior model PDF p(m)
p(d|m) (perhaps from supplemental

(includes forwwments of model)

Bayes’ Rule

v

posterior model PDF
p(m|d)
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Geophysical vs. analytical inversion

Given a set of discrete data d. we want to solve for a continuum model m(x)

Linear special cases

General nonlinear problems

* Integral equation (IFK):
d(s) = /g(s, z)m(x)dx

* Inverse problem :

i = [ gi(a) m(@)da +

* Parameterize m(x) :

m(e) = 3 m;b;(a)

* Parameter estimation problem :

di — Gij mj ‘|’€7;

* Inverse problem :

* Still parameterize the same way :

m(e) = 3 m;b;(a)

* Parameter estimation problem :

d; = Flmy,ma,...,mp] + €

GANSE, APL, Univ. of WA, 2007
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Some analytical inversion attempts for
geophysical problems

Mainly developed for use on
Schroedinger equation, with e Exact inversion
transforms for wave equation. e Downward-continuation
So doesn’t handle elasticity. 4
Also too unstable for use in
geophysical problems, where we "
have lots of noise and terrible
geometric coverage.

* Layer-stripping
* Gelfand-Levitan method

But noting work by our own
Sylvester & Winebrenner re

reflection coefficients: promising
for this one problem, although LAYER STRIPPING FOR THE HELMHOLTZ EQUATION"

SIAM J. APPL. MATH © 1996 Society for Industrial and Applied Mathematics
Vol. 56, No. 3, pp. 736-754, June 1996 003

JOHN SYLVESTER'!, DALE WINEBRENNER!, AND FRED GYLYS-COLWELLS?

limited to 1D with no attenuation

GANSE, APL, Univ. of WA, 2007



A few clarifications

* Note model function m(.) doesn’t have to be 1D, but we still use vector m :
= E m; b
J
m(z,y, z E m;b;(z,y, )

* Rank-deficiency and ill-posedness :

To keep notation clean here, let us
assume noise in d ,_is €~ N(0,I)

Define objective function:
obj f(m) = [|dobs — Gmlf3
(i.e. data misfit)
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Linear inverse problems

Finding a solution estimate in frequentist approach

m=(G"'G)'G"dpps —

(Az)?

* Regularized least squares example (Tikhonov) :

...again let € ~ N(0,I) here.

m = (GTG + v2LTL) " 'GTd,
“messes up” the estimator
in return for stability (see next slide)

» Choosing optimal tradeoff parameter on L-curve :

* Occam’s regularization - 2nd derivative constraint via “roughness” matrix L :

4 Vi We want to only fit the data to
dgpe — Gm||% “Z within the noise statistics, then
data misfit y choose the smoot’hest model fn..
N But we often don’t know the noise
> statistics, so the choice of best
HLmH% tradeoff param isn’t always trivial.
roughness
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Linear inverse problems

Uncertainty and resolution of the frequentist solution estimate

10 20 30 40 50 60 70 80 920

% o
n
90
0
]
710

T
0

0 10 20 30 40 50 60 70 80 0
model parameter

. “generalized inverse” of G :
* compute covariance matrix as :

* compute resolution matrix as :

* Covariance and resolution matrices :

Q
3
|

resolution matrix

10 20 30 40 50 60 70 80 90

N,

UO 10 20 30 40 50 60 70

model parameter

.
80

...again let € ~ N(0,I) here.

G#* = (GTG +v?*LTL)'GT
G#*G#T
R,, = G*G

“Messing up” the
estimator means its
solution becomes a set
of weighted averages
of the true solution.
The resolution matrix
contains the weights,
and this covariance
matrix is that of the
weighted averages,
NOT of the model
parameters themselves.
Thus this approach
does not provide a
probabilistic result.
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Resolution analysis for experiment design

Resolution analysis to optimize experiment geometry, before doing the experiment

resolution matrix R

The weights are generally clumped about
the parameter of interest, lending an
interpretation of limited resolution - for
example, parameter 30 here cannot be
resolved independently from parameters
25 - 40. A diagonal resolution matrix has
perfect resolution, and increasing spread
about the diagonal shows coarsening
resolution. (However, note not all
resolution matrices are symmetric.)

10 20 30 40 50 60 70 80 90

tr(R) ~ # of parameters resolved by the dataset

Could map a function q(range,depth) where each grid point gets a tr(R) value
corresponding to a different receiver array location.

0
O This map can then
show optimal
-50 location(s) for the
receiver array.
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Introducing Bayesian inversion

* Frequentists define probability in terms of frequency of repeatable events.
So one can’t know anything about model before the event/experiment.

« Bayesians define probability in terms of degree of belief.
So one can know about the model before the event/experiement.

* Bayes’ Rule: (from definition of conditional probability)

s i

“posterior” distribution “data likelihood” “prior” distribution of
of model parameters function model parameters

for linear problem + gaussian dists, frequentist & Bayesian solutions look similar...

GANSE, APL, Univ. of WA, 2007



Comparison of Bayesian and frequentist
inversion for linear problems

...again here €~ N(0,I) ind , = f(m) + €

* Linear problems + gaussian distributions > same ML/MAP estimate.
(for same “prior info”, eg roughness regularization).

* Freq: y = (GTG+V°L'L) 7 'G dgps  (for myepe=0)
*Bayes: Myap=(G'G+C, ) 'G dops  (form;,=0)
prior cov

parameterized by v

* But the solution covariances differ due to the different philosophies :
* Freq: C = G#C_.G#T = G#G#T (since C-1)
= (GTG +’LTL) 'GTG(GTG + v*LTL) !
* Bayes : C=(GT'G+cC;H!

GANSE, APL, Univ. of WA, 2007



Comparison of Bayesian and frequentist
inversion for linear problems

...again here €~ N(0,I) ind , = f(m) + €

A linear resolution matrix can be defined for both cases (although they’re not
identically the same quantity because the philosophies/covariances differ) :

*Freq: G# = (GTG -4 I/2LTL)_1GT
R =G"G

* Bayes : R:I_é C;l

Unlike frequentist inversion which must estimate weighted averages of model parameters,
Bayesian inversion is a fully probabilistic description of the model parameters themselves.
So no weighted averages, and all resolution information is contained in the probability
distributions.

Tarantola, 2005
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Weakly nonlinear inverse problems

Finding a solution estimate via local linearization in either frequentist or Bayesian inv.

* Local linearization (using analytical derivs, finite diffs, or alg diff for the F(m)) ) :
d = f(m) — f(mz) + F(m;)dm; _|_/ (i.e. Taylor series expansion about m,)
matrix of truncate
partial derivs at linear o
, obA,e,ctlve,surfac,e
IooPatn of |r1versxoln 0 t|ml|2at|on 'superlmposedlon Ob]e‘C[IVe Sllnface CIOH[OUI'S
* Observed data: d . =f(m)+¢€
Let’s say € ~ N(0,I) to keep notation clean below... oo S
Bo
g sl
g 40t .
* Gauss-Newton method : .|
start with initial est. mg , then... | B
G =F(m;) < compute local derivatives U_—T\\ T ’ N
ddobs = dobs — f(mz) <& compute local residuals X (km)
om; = (GTG + v’LTL) " 1(GTdops — v2LTLm;) < solve for model perturbation step
my; =m; 0m; < add on the new model perturbation step
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For more strongly nonlinear problems...
Markov Chain Monte Carlo (MCMC) sampling of the Bayesian posterior distribution

Only proportionality necessary for modifying random walk (saves computation):

p(m|d) o« p(d|jm)p(m)

Metropolis/Hastings : random walk that prefers higher posterior probabilities:

* probability information is in sample
density rather than in the p(m|d)
values of the samples

* then compute marginal distributions
and so on for the parameters

* burn-in, sample independence, and
when to stop sampling (Raftery & Lewis, 1996)
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Filters and smoothers - stringing together
a series of Bayesian inverse problems

“Conjugate prior”: for a given data likelihood p(d|m), one that
produces a posterior distribution of the same form as the prior,
i.e. parameterized the same (e.g. Gaussian or other exponential)

e (p(m|d)) o p(djm) p(em)
\

Set next prior equal to
previous posterior...

time | : oc p(d|m @
\ Set next prior equal to
previous posterior...
time 2 : p(m|d) p(d|m)

etc...

GANSE, APL, Univ. of WA, 2007



Filters and smoothers - stringing together
a series of Bayesian inverse problems

Filter - estimates a vector function m(t) or sequence m, (k=1..N)
at last measurement point:

measurements: | 2 3 4 5 6 7 8
rrrrrrtrd
estimate

Smoother - estimates a vector function m(t) or sequence m, (k=1..N)
in middle of measurements

TTTI T.t

estimate

measurements:
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A common application of filters and smoothers

\\\\\\\\\\\\\\\\ E.g. tracking a satellite or missile.
\ We additionally regularize by
the dynamics to find the
“best” trajectory.

G. Schmidt, | Guidance, Cntl, & Dyn., 1993
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Filter theory tutorial code on my APL website

http://staff.washington.edu/aganse
(also linked via ESS and APL directory pages)

Nonlinear Filtering Examples from Gelb
Andy Ganse, Applied Physics Laboratory, University of Washington, Seattle

Home / Current Research & Pubs / FALLING BODY (*) --vveues -

Home ’ 3
C.\. A Matlab script to recompute the nonlinear tracking filter examples

6.1-3 in Gelb
Current Research & Pubs

o RADAR X,
Publications & Abstracts ‘

My inverse theory research relies on concepts from recursive filters, so I had to take some timg
speed on those. A classic textbook for this is Applied Optimal Estimation, editted by Gelb (1974]  --z3-------
of that book are two simple radar tracking examples (6.1-2 and 6.1-3) which demonstrate sev{
Inverse Theory Resources filters. I've programmed up those examples into a Matlab script called gravdragdemo.m and ad( H
filters to compare and contrast them in both linear and nonlinear cases. f2 i

Filter examples

Side Interests

These examples use radar ranging to estimate the elevation, downward velocity, and drag coefi

My Bookshelf falling body as functions of time. These three values are collected into a 3x1 vector called the s !
Downloads again a function of time. The two examples are related: example 6.1-3 has a 2D arrangement ' fy '
nonlinear measurements with respect to x. Example 6.1-2 is a special case of 6.1-3 in which th Redrawn from figwoe 6.1.5, Applied Optisaal Fiter, o Gelb
Goofy Stuff collapsed to 1D by letting r1 and r shrink to zero, causing the measurement relation to becon| ,,,,,,,"f,“,_:;,g(,m:ffaw,mb 1994
respect to x. The dynamics of both examples in the book are nonlinear because they include airdrag (x3). |

which depends on velocity (x2)
measurements case) and exan]

LKF=cyan, EKF=blue, EKF2=green

E 6.1-3:

FALLING BODY

B esim emor (1BA7)

elev estm eeror (1)
vel estim emor (IVs)
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My own PhD work

* Resolution and uncertainty analyses for a shallow water
ocean bottom inverse problem:

— optimize experiment geometry via resolution analysis, and design
experiments in which much more information about the bottom is
obtained

— validating linear approximation of uncertainty and resolution via
Monte Carlo and nonlinear filter approaches. Ideally the linearization
approach is preferrable since fastest, but must check validity.

(const velocity field of 5km/s)

P-wavespoad profile
3 8 8 8 8 3
km north
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Summary

* Introduced both frequentist and Bayesian inversion, and filters

* Linear, weakly nonlinear, and more strongly nonlinear problems

e Discussion regarding geophysical vs. analytical inversion

e Some shameless plugs for material on my website ;-)

* And a brief mention of my own PhD research (not the focus today).

e This talk paves the way for Ken Creager’s (ESS-UW) talk next time on
results of specific geophysical inversion work, including 3D crustal
tomography and locating seismic “tremor” signals.

THANK YOU
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