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A conceptual / non-technical talk

* Intro via examples

* Data vs. Model

* Deduction vs. Induction

* Probability vs. statistics

* Frequentist vs. Bayesian

 Math vs. Earth Science

* Parameter estimation vs. inversion
* Uncertainty vs. Resolution

* Linear vs. Nonlinear

e Recommended reading
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Intro via examples

Glacier gravimetry: estimate glacier cross-section from gravity measurements
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Global seismic inversion: estimate Earth’s interior wavespeeds & densities from EQ seismograms
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Intro via examples

Computerized Tomography (CT) scans: estimate 3D body interior densities from Xray atten




Intro via examples

Ocean bottom (“geoacoustic”) inversion: estimate seafloor properties from sonar in water
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Radio doppler gravimetry of planetary bodies: estimate density of icy moon interiors
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Deduction vs. Induction

predicted data = somefunction( model of interest )

, density(x,z)
gravity(x;)

- wavespeed(z)
traveltime(depth;) temperature(z,t)
waveintensity(x;t)) chemsrcleakage(t)
dopplerfreq(t;) etc
chemconcentration(x; t;)
deduction
<
“forward problem”
effect cause

induction

AP} Ganse “inverse problem”



Probability vs. Statistics

In these cases it is the latter scenario
that is more often useful in life:
outside situations involving gambling,
we are not normally provided with
theoretical knowledge of the odds but
rather must estimate them after
making a series of observations.
Scientists, too, find themselves in this
position: they do not generally seek to
know, given the value of a physical
quantity, the probability that a

I have stressed this distinction
because it is an important one. It
defines the fundamental difference
between probability and statistics: the
former concerns predictions based on
fixed probabilities; the latter concerns
the inference of those probabilities
based on observed data.

H The
measurement will come out one way or - Leonard Mlodinow Doy nkard’s
another but instead seek to discern the The Drunkard’s Walk | . -

true value of a physical quantity, given
a set of measurements.

deduction

“forward problem”

effect cause

induction

“inverse problem”



Frequentist vs. Bayesian

A debate raging for 200+ years in the statistics community

* Frequentists define probability in terms of frequency of repeatable events.
So one can’t know anything about model before the event/experiment.
Most common tool — linear (or iteratively linear) approach to problem.

The ESS class concentrates
on frequentist tools with
iteratively linear solution
techniques — you can only fit
so much into one quarter...

* Bayesians define probability in terms of degree of belief.
So one can know about the model before the event/experiement.
Common tools — fancy, computationally-heavy MCMC inversion, but can do
linear/iteratively-linear problems too, and also can do filters (eg Kalman).
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Data vs. Model

Note the different sets of X & Y axes in the two spaces.

predicted data = somefunction( model of interest
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predicted data

Data vs. Model

= somefunction( model of interest

data space model space
(measurements & predictions of them) (what we really want to know)

)



Math vs. Earth Science

predicted data = somefunction( model of interest )
d(s) m(x)
model of interest = somefunction'l( measured_data )
m(x) d(s)
d(s;)

— 4 2

CT scans (Radon transform)

Qpt Ganse nuclear scattering experiments (inverse scattering theory)



Math vs. Earth Science

predicted data = somefunction( model of interest

A

S
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Central issues for inverse problem solutions:
* existence
* uniqueness
e stability

* uncertainty
QH){, Ganse



Parameter estimation vs. inversion

parameter estimation: solve for a handful of discrete values

inversion: solve for a continuous function (be it 1D, 2D, etc.) —
much more involved (although it uses parameter estimation)

201 5, 0 ™~ T
(const velocity field of 5km/s)
20
15+
g 40 —
107 S
g E
2 s 60
: g
5r £
o
[0
©
80 —
or
100 —
5 . . L | y | | | | | | | | |
0 5 10 15 20 25 1500 1550 1600 1650 1700 1750 1800 1850 1900
km east Pwave velocity (m/s)
param est: find src x,y inv: find vel(z)



Parameter estimation vs. inversion

parameter estimation: solve for a handful of discrete values

inversion: solve for a continuous function (be it 1D, 2D, etc.) —
much more involved (although it uses parameter estimation)
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Parameter estimation vs. inversion

parameter estimation: solve for a handful of discrete values

inversion: solve for a continuous function (be it 1D, 2D, etc.) —
much more involved (although it uses parameter estimation)

inv: uh-oh, many curves
produce predictions that
fit the data



Uncertainty vs. Resolution

Four of those many curves now shown separately,
‘ with their uncertainties included around them.

depth below seafloor (m)
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Choose what you want:
Higher-res solutions have larger uncertainties, lower-res solutions have smaller uncertainties.
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Linear vs. Nonlinear

predicted data = somefunction( model of interest

d m

Linear problems: scalability and superposition;
Gaussians map to Gaussians;
Computes fast — jump to solution in one step;

d=Fm

Nonlinear problems: more general (and more common!);
Uniqueness, stability, uncertainty take MUCH more effort & interpretation;
Slower — use sequence of linear subproblems, or use many MC samples.

d=f(m)

Q!Di, Ganse



The Class: ESS 523

* Overall: learn how to do linear problems, then set up your nonlinear problem
as a sequence of linear ones.

» Will extensively use Matlab or Octave (free/awesome GNU clone of Matlab)

* Recommended Prerequisite background:
* Basic probability & statistics concepts -
e e.g. mean, std dey, variance, covariance, correlation
* Linear algebra -

* e.g. matrix/vector arithmetic, transpose, inverse, null space, rank, condition
number, eigenvalues/vectors, under/over-determined probs

* Fourier transforms (time/space «- frequency)
* Some idea of connection between the class and your research

* No tests, but weekly labs and a class project based on your research



Shameless plug

http://staff.washington.edu/aganse

(also linked via ESS and APL directory pages)

Andy Ganse's Geophysical Inverse Theory Resources Page
Andy Ganse, Applied Physics Laboratory, University of Washington, Seattle

Home
C.\V.

Current Research & Pubs

Inverse Theory Resources

2004 Summer School
Side Interests
My Bookshelf
Downloads

Goofy Stuff

Some handy quick links:

UW (Seattle) Math Dept
Inverse Problems seminars
(you know how those pure
mathematicians are; be sure to
keep them honest by
occasionally bringing up
questions about noise and
stability!)

Inverse Problems journal

Google Scholar (academic paper

Home / Inverse Theory Resources /

A growing list of recommended textbooks and helpful papers, Q&A list, related web links, and lecture
notes, all on aspects of geophysical inverse theory.
* Recommended reading
o Textbooks:
(Note also my "favorite textbooks" list on my Books/Reading List webpage, which includes the below books on
inverse theory along with others on different topics in geophysics and math.)
= Parameter Estimation and Inverse Problems, by Richard Aster, Brian Borchers, Clifford Thurber.
Note also the homepage for this book which includes errata.
For beginners to inversion, this book is strongly recommended above the others; there are plenty very

useful books on the topic, but this one really gets you up to speed in the subject fast with great hands-on

Matlab examples. Then, after you're more familiar with the material, go back and reread the book again -
there are tons of handy comnaricanc hotweon mothnde with roforoncoc tn doonor troatmeont nf the

_ 'Inftrz;mb,t:h'ry * Recommended textbooks
veehui comparicons | * Recommended journal papers
anamrss | o Links to software and other
web resources
* Lecture notes and labs from
the inverse theory class | TA'd.

can afford it.)
sarmelA NI o

= Rank-Deficient and Discr{
Hansen.
Very well written book c(
(but not all) can be foun
free unlike this book!

= Geophysical Inverse The
A classic text that is very
concepts, but injects wit{
Gram matrix / represent
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Another shameless plug

http://staff.washington.edu/aganse
(also linked via ESS and APL directory pages)

Nonlinear Filtering Examples from Gelb
Andy Ganse, Applied Physics Laboratory, University of Washington, Seattle

Home / Current Research & Pubs / FALLING BODY () --vvween -
Home S lae
C.V. A Matlab script to recompute the nonlinear tracking filter examples S
6.1-3 in Gelb :
Current Research & Pubs / :
- RADAR X,
Publications & Abstracts My inverse theory research relies on concepts from recursive filters, so I had to take some time '
Filter examples speed on those. A classic textbook for this is Applied Optimal Estimation, editted by Gelb (1974]  --3-------
of that book are two simple radar tracking examples (6.1-2 and 6.1-3) which demonstrate sevg :
Inverse Theory Resources filters. I've programmed up those examples into a Matlab script called gravdragdemo.m and adq H ;
filters to compare and contrast them in both linear and nonlinear cases. 2
Side Interests : :
My Bookshelf These examples use radar ranging to estimate the elevation, downward velocity, and drag coefi
Y S falling body as functions of time. These three values are collected into a 3x1 vector called the s 3
Downloads again a function of time. The two examples are related: example 6.1-3 has a 2D arrangement ! f !
nonlinear measurements with respect to x. Example 6.1-2 is a special case of 6.1-3 in which th . ) ) )
Goofy Stuff collapsed to 1D by letting r1 and rp shrink to zero, causing the measurement relation to becom Rd'a“[;:ff,mf;xmf;wm_l}x' o e
respect to x. The dynamics of both examples in the book are nonlinear because they include airdrag (X3), IF
which depends on velocity (x2) 'JLKF'W!"- EKF=blue, EKF2=green
measurements case) and exan] . —
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Fortunately, not too many shameless plugs...

http://staff.washington.edu/aganse
(also linked via ESS and APL directory pages)

Seismic/Cartesian Raytrace Applet (Small)
Andy Ganse, Applied Physics Laboratory, University of Washington, Seattle

Home / Side Interests / Misc/ Raytrace Java Applet / Small Size /

Home
C.\. Seismic Raytracing Java Demonstration Applet (Cartesian coordinates)
Current Research & Pubs Please allow a few moments for the applet to download and for Java to initialize...
Once it's running you can click the green question mark for a brief help listing.
Inverse Theory Resources Don't see an applet coming up after a long time, or having difficulty with the applet freezing up? The most likely culprit is that

. our Java plug-in is too old - go update yourself at java.sun.com/getjava.
Side Interests 4 Pug go up 4

Helioseismology

Europa & Icy Moons [1\ [7 @ .1 = @
3¢ | = =

Misc

Raytrace Java Applet WaveVel vs Depth : . T -
Fault Gravimetry A TI 1 or 1
Office Astronomy L =
st = : st
Beamforming d \"g d '
e g e ]
Multi-phase linear regr. l-t’ a0l \'. i lt’ 10 i
Pythagorean proof h \ h
4
|
My Bookshelf (151 vl L5t 7
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* Enter wave velocity profiles and watch the rays go!
* Spherical geometry one available too...
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Recommended reading

Really fantastic popular book re probability and statistics:
The Drunkard’s Walk,
by Leonard Mlodinow

My website (of course!) — pages on inverse theory resources,
linear and nonlinear filter tutorial, ray-tracing, and much more.
http://staff.washington.edu/aganse

The best frequentist inverse theory textbook:
Parameter Estimation and Inverse Theory,
by Aster, Borchers, Thurber

The best Bayesian inverse theory textbook:
Inverse Problem Theory and Model Parameter Estimation,
by Albert Tarantola (available free online!)



