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A cubic spline curve-fitting example to demonstrate the use of a 
smoothing matrix in higher order Tikhonov regularization (e.g. as in 
Occam’s and similar inversion methods). 
 
We’ve learned that in inverse problems we desire to estimate a continuous model 
function based on a finite number of data points.  This is an inherently underdetermined 
problem – without regularization, i.e. additional constraints on the model function, there 
are an infinite number of equally valid solutions.  Different inversion methods use 
different variations of regularization.  A commonly used one that’s useful to know is 
called “Occam’s inversion” (after Occam’s Razor in philosophy, stating that all else 
being equal, the simplest answer is the best one – adapted for inversion in Constable, 
Parker, and Constable, in Geophysics, 1987).  In Occam’s inversion and similar methods, 
from those infinity solutions we choose the simplest one, meaning the one with the 
fewest model function features (like jumps and wiggles) that are required to still fit the 
data to within its noise.  The regularization filters out undesirable model functions by 
using a model norm based on their 2nd derivative, so that if we minimize the norm, we 
minimize the curvature in the model function, making it as smooth as allowable by the 
data and data noise.  In this lab we will learn how to set up such an inversion for our own 
projects by setting up a simple special case that estimates a cubic spline curve fit for a set 
of data points on a graph. 
 
 
What is a cubic spline? 
A cubic spline is defined as the smoothest curve that exactly fits a set of data points.  So 
spline curves do not consider noise on the data points, although in this lab we will use a 
very small amount of noise to simulate an exact fit while setting up the technique for 
more general inverse problems. 

 



This problem today is a special case of a linear inverse problem, because the data space 
and the model space are the same – the data points and the model function can be plotted 
on the same graph.  Hopefully this will make more clear the concepts of model 
smoothness and associated uniqueness.  We’ll see shortly why it’s a linear inverse 
problem. 
 
Note that for a finite set of data points there are all sorts of (in fact an infinite number of) 
possible continuous curve functions that fit all the data points exactly.  For example, 
using the data points from the previous plot in repeated cases: 
 

 

 
 
These functions may not all be pretty looking, but they all fit the data points exactly.  
Without further constraints, who’s to say which curve is the “real” one?  Notice here that 
in the type of curve fitting of today’s lab (and in your own inverse problems) we are not 
determining ahead of time some coarse parameterization of the continuous model 
function such as by a polynomial of degree N.  Instead, by choosing the constraint of 
“minimum 2nd derivative norm”, we let the data points and the problem determine the 
amount of “wiggliness” of the curve by choosing the smoothest one that fits the data. 
 
Now after just saying “we don’t use a polynomial to do this”, I should clarify where the 
word “cubic” comes into the name “cubic spline”.  It turns out that in meeting the 
definition I gave already, a cubic spline curve happens to be a string of concatenated 
cubic function segments, joined at each data point x value in such a way that the 2nd 
derivative doesn’t change across the join point.  The “cubic” part is not immediately 
obvious – it relates to the 2nd derivatives and can be seen in the development given in 
Parker’s book.  In fact, computer programs that use spline curves compute them in a 
more efficient way than we will here, by directly calculating each cubic segment.  But 
that wouldn’t help us learn how to set up an Occam’s inversion!  Lastly on this point, 
Parker develops an inversion to find a cubic spline curve in his book using the Gram 
matrix technique, and obtains the exact continuous spline function.  But we’ll use a 
different technique that is approximate but also more applicable to your other geophysical 
inverse problems. 



Both the Parker book version and today’s version of the problem are linear inverse 
problems (or purists might call our approach today a “discrete linear inverse problem”).  
In Parker’s development, you want to estimate the coefficients of the representer 
functions, which are linearly parameterized with those coefficients.  In today’s lab it’s 
even easier; we simply want the model curve equal to the data point values when at the 
data point x locations, and we specify this with a matrix of zeros and ones.  Then the 
regularization constrains what goes between the data points.  Let’s look at that now. 
 
 
Defining the A matrix: 
In our method, given a set of data points at locations xi, we will estimate the continuous 
spline curve as a finely discretized sequence of points at equally spaced locations xxj.  We 
want the points xxj in the model curve to equal xi at the appropriate locations, and we can 
specify that with a simple linear relation between the two using a matrix of zeros and 
ones: 
 

 
 
This A matrix only controls information at the data point locations; it’s zero everywhere 
else so it’s a pretty sparse matrix.  So A is non-invertible – it will require regularization 
such as the higher-order Tikhonov approach we will do with the smoothing matrix L.  By 
the way, if we wished, we could have instead specified data points at x locations that 
were not on the xx grid.  In that case we could design a slightly different (but still sparse) 
A that would constrain the data point values to be linear interpolations between the 
neighboring two f(xx) values.  But that’s really tangential to our use of this lab as an 
example for setting up our own inversion projects; let’s stick with the 0’s and 1’s for this 
lab assignment. 
 
 
Defining the L matrix: 
We need a mechanism to compute the 2nd derivative of the model curve function.  As 
seen in class, rather than analytically compute expressions for the 2nd derivative of the 
model curve (as Parker does in his book) we will use a 2nd order finite difference operator 
matrix L.  The product Lm (recall from above that m is the finely discretized model 
curve vector with mj=f(xxj)) approximates the 2nd derivative of the model curve.  This L 



matrix takes one of the two similar forms below.  Most of either matrix is zeros, so for 
clarity in displaying them the zeros are left as blanks: 
 
 

 
 
 
The difference between these two forms of L is in having (or not) the top and bottom 
rows to make a square matrix – note the upper form is square while the lower form is not.  
Since they both have m columns they both can multiply the model curve vector m, but 
the resulting product vectors will differ in length by two elements.  Let’s come back to 
these top and bottom (or missing) rows in a moment; first let’s discuss the common 
features to both of these matrices. 
 
L in either form is normalized by the square of the step size Δxx, and follows the 
definition of 2nd finite differences.  It is required that the xxj are equally spaced here.  
Recall the finite difference discussion from Lab #4; the approximation of a first 
derivative in terms of forward and central differences can be written as below.  This is 
slightly different notation than we used in Lab #4 but says the same thing: 
 

 

 
 
 
 



The O{Δxx} refers to the accuracy of the finite difference approximation, based on the 
truncation of the Taylor series that it was derived from (you’ll find pertinent details and a 
derivation in your favorite numerical methods textbook).  Notice from the O{ } that the 
central difference is more accurate than the forward difference, as was also mentioned in 
Lab #4. 
 
Similarly, there is a finite difference approximation to the second derivative in terms of 
forward and central differences: 
 
 

 
 
 
We can see from the coefficients of these expressions where the rows of {1, -2, 1} enter 
into the matrix L, which multiplies the vector m composed of mj=fj =f(xxj).  We also see 
that step size normalization factor in the denominator. 
 
Now back to the top and bottom rows.  The Aster/Borchers/Thurber book uses the second 
form for L here; our professor Ken uses the first form.  They have differing numbers of 
rows but the same number of columns, so they both can work in our inversion formulas 
since only the product LTL is used (as seen in class and recalled shortly below), which is 
a square matrix of the same length as the model vector m.  Notice that the central 
difference formulation relies on the neighboring points on either side to compute the 
approximate derivative.  That’s no problem except for at the edges of the L matrix, which 
correspond to the endpoints of the m vector that we are taking derivatives of.  So what 
does one use for the non-existent neighboring point to approximate the 2nd derivative at 
the edges? 
 
There are several ways to address that problem.  The first is the Aster/Borchers/Thurber 
approach which doesn’t approximate the derivative at the edges at all, so that the 2nd 
derivative vector is shorter than the model vector by one point on each side.  In the L2-
norm based inversion schemes one only uses LTL so that this difference in length doesn’t 
matter.  But maybe sometime you’ll want to use some other norm like the L1-norm (not 
discussed in this lab) which doesn’t use LTL, or have some situation where you want to 
compute a 2nd derivative approximation of the same length as the model vector.  Or 
maybe you want to guarantee that LTL is invertible – it’s not in this non-square L case – 
so that you can guarantee that (ATA+ν2 LTL) in the normal equations will be invertible 
for an appropriately sized ν.  (In practice this often may not be a problem however.)  In 
those cases you’ll need to add a top and bottom row to L and fill in the a,b,c,d elements 
according to your needs.  Below in the table are some possibilities for a,b,c,d choices, but 
they are not the only choices you could do.  Meanwhile, note that in this lab assignment 
we will only use the Aster/Borcher/Thurber version of L, i.e. the non-square one without 
the extra top and bottom rows.



Some possibilities for a,b,c,d in the top and bottom rows of the L matrix: 
{a, b, c, d} Description 
{1, -2, 1, 0} Use the 2nd forward difference rather than 2nd central difference to 

approximate the derivative at the endpoints.  Note from the 
equations on the previous page that the forward difference is less 
accurate than the central one used in the rest of the matrix, i.e. 
O{ Δxx} vs. O{ (Δxx)2}, but often this may be negligible. 

{2, -5, 4, -1} There does exist an O{(Δxx)2} accuracy 2nd forward difference 
with four terms (this is it), derived in numerical methods textbooks 
by including one more term in the Taylor expansion, if you want 
to match the O{ (Δxx)2} accuracy of the rest of the L matrix. 

{0, 0, 0, 0} Set a boundary condition constraining f’’ to equal zero at the 
endpoints, so that there is zero curvature there. 

{-2, 2, 0, 0} Set a boundary condition constraining f’ to equal zero at the 
endpoints, so that there is a zero gradient there. 

{-2, 0, 0, 0} Set a boundary condition constraining f to equal zero at the 
endpoints. L is invertible with this choice. 

{-2, 1, 0, 0} Extends minimum curvature integral from –∞ to +∞ and forces 
f=0 at all nodes outside grid.  f’’ at boundary and first node outside 
grid can have non-zero curvature.  L is invertible with this choice. 

 
You can derive the boundary conditions listed above using the 1st and 2nd finite difference 
formulas on the previous pages, rearranging them to substitute for fj-1, which is the 
inaccessible point past the endpoint.  (Hint on the f=0 one, you somewhere specify fj as 
the mean of fj-1 and fj+1.) 
 
With the exception of the last two, most of the choices in the table share the drawback 
that they cause at least one of the eigenvalues of L to be zero, in turn causing L and 
hence LTL to be non-invertible, potentially making trouble later when trying to invert  
(ATA+ν2 LTL).  Often in practice this may not be a problem; it depends on the null space 
of the A matrix.  If it is a problem, you might get stuck with having to use a different 
choice of boundary condition. 
 
 
Putting the pieces together to estimate the model curve: 
Now let’s assemble our various parts to compute our spline curve fit.  We had two 
requirements for the estimation which we now have the pieces to specify: 
 

1.) Exactly fit the data d=Am, or in our case we’ll fit it very closely rather than 
exactly by assuming tiny data noise.  This way we can set up the problem in a 
way that you can adapt for your own inverse problems. 

 
2.) Minimize the norm of the 2nd derivative of m, i.e. minimize ||Lm||2, making Lm 

close to the zero vector 0. 
 



We can combine those requirements like this: 
 

 
 
The σ is the standard deviation of some tiny amount of data noise that we’ll make up for 
the problem, here the same for all data points – just make it a few orders of magnitude 
smaller than the values of your data points.  (Recall from class that for a more general 
problem with data noise which isn’t all the same for every data point, we could instead 
pre-multiply A and d by C-1/2, where C is the data noise covariance matrix.)  The choice 
of tradeoff parameter ν will depend upon σ and is chosen via the discrepancy principle on 
the L-curve, although in this example problem there’s handily a wide insensitive range 
for ν   so we’ll skip picking the best ν off the L-curve in this lab.  You’ll definitely need to 
do that in general however, according to one of the methods presented in class or in 
Aster/Borchers/Thurber. 
 
We can solve the normal equations for the requirements above to find the least-squares fit 
for the model curve m: 
 

 
 
 

 
 
The Â  and d̂  are again the noise-normalized values defined above.  The  !m  is the 
maximum likelihood solution to the regularized problem for a given value of ν.  In a 
general problem we would find the optimal ν by using the discrepancy principle on the L-
curve, which means rerunning the problem a number of times, and each time solving for 
 !m  and the norms of the data residuals and of the model smoothness.  The rule of thumb 
that we learned for a useful range of ν is to start with the largest value as: 
 

 
 
and then decrease exponentially over say 10 order of magnitude or so (yes that’s a lot!).  
So for example you might have 10 ν points as: 
 

 
 
and then zoom in on the region of the optimal ν later.  In this particular problem chosen 
for this lab assignment, it turns out that very little changes between νlargest and the optimal 



ν, so conveniently here we’ll get away with just using νlargest in this lab (you should try it 
and see for yourself if you’re curious).  Whether for this lab or another problem later, be 
aware of the convenient Matlab function eig() for computing νlargest. 
 
Lastly, all the above process was for a linear inverse problem.  But all the same material 
applies to the iterated, linearized approach for weakly nonlinear problems that we learned 
in Labs #4 and #5.  The important difference is that in Labs #4 and #5 we were talking 
about a parameter estimation problem with just a few parameters and so we needed no 
regularization using (say) an L matrix.  But when we have an actual inverse problem 
where we must estimate a continuous vector model function from a finite number of data 
points, we need to add in the regularization, which involves choosing an optimal ν.  The 
remaining concern for the nonlinear problem is whether to estimate that optimal ν at each 
iteration or to run the whole set of iterations for each ν and choose the optimal ν at the 
end.  The former is used in the Occam’s inversion method, is more computationally 
efficient, and often works well in practice.  The latter is the Gauss-Newton method, and is 
less computationally efficient but can be justified more rigorously regarding the 
definition of the optimal ν as the maximum likelihood of ν.  The upshot is that folks use 
both methods, and that both methods use the Occam’s Razor principle via regularization 
with the 2nd finite difference operator matrix L. 
 
Okay, now let’s end by listing the steps of the assignment for this lab, which is basically 
to compare the 2nd finite difference to the exact derivative of some polynomial, to fit our 
smoothest curve to some made-up points, and then to compare this curve to that produced 
by the Matlab spline() function. 
 
 
Assignment: 
 
Part A: 
 

1.) Make up some 5th or 6th degree polynomial. 
2.) Compute your polynomial’s 2nd derivative by hand. 
3.) Create a vector of many closely and evenly spaced xxj values (say, 100 of them). 
4.) Calculate the polynomial values fj and 2nd derivative values gj at your xxj. 
5.) Create a few versions of your L matrix (based on the table) and multiply them by 

the fj to approximate the 2nd derivative. 
6.) Plot the fj, gj, and your few versions of 2nd finite differences on top of each other, 

against the xxj.  Compare.  How do the edge values compare? 
 
Part B: 
 

1.) Forget about the above polynomial completely now! 
2.) Make up around 10 or so data points hi, with their x-axis values xi drawn from 

among the xxj  above (this will let us use just 0’s and 1’s in the A matrix rather 
than worrying about interpolating). 



3.) Make up a data noise standard deviation σ that is very small compared to the 
magnitude of your hi. 

4.) Now compute the smoothest curve to fit those data points: 
a. Create your A matrix (hint: use the indices i and j that you used in Part B 

step 2). 
b. Normalize A and d by your data noise standard deviation σ. 
c. Create your (m-2)xm L matrix, where m is the length of xx, i.e. the 

number of j indices. 
d. Calculate νlargest. 
e. Calculate  !m  which is your vector of f(xxj), the discretized smoothest 

curve fit to the data points (or at least its very close approximation). 
5.) Use Matlab’s spline() function to compute a spline curve that way and plot 

along with your  !m  result above.  Your  !m  should be the smoothest possible 
curve fit, so if the Matlab curve doesn’t exactly match, is  !m at least smoother?  
Remark on any differences. 

 
 


